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Unpredictable disruptions (e.g., accidents, traffic conditions, among others) in supply chains (SCs) mo-
tivate the development of decision tools that allow designing resilient routing strategies. The transpor-
tation problem, for which a model is proposed in this paper, consists of minimizing the stochastic
transportation time and the deterministic freight rate. This paper extends a stochastic multi-objective
minimum cost flow (SMMCF) model by proposing a novel simulation-based multi-objective optimization
(SimMOpt) solution procedure. A real case study, consisting of the road transportation of perishable
agricultural products from Mexico to the United States, is presented and solved using the proposed
SMMCF-Continuous/SimMOpt solution framework. In this case study, time variability is caused by the
inspection of products at the U.S.-Mexico border ports of entry. The results demonstrate that this fra-
mework is effective and overcomes the limitations of the multi-objective stochastic minimum cost flow
problem (which becomes intractable for large-scale instances).

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The United States is the most important customer for the
Mexican ornament flowers industry due to the geographical
location of these two countries [1,2]. Road transportation is an
affordable transportation method that is available to Mexican
suppliers. According to the U.S. Bureau of Transportation Statistics
[3], truck and rail transportation of products from Mexico to the
United States increased by 3.7 percent, from $34.3 billion in May
2012 to $35.57 billion, in May 2013. Industry analysts expect this
trend to continue growing in the near future.

Disruptive events are common in most transportation systems.
Accidents, traffic conditions, and weather conditions (among
others) are causes of disruptive events. Disruptive events are
particularly important when transporting perishable products. The
availability of inspection lanes and the process of drug trafficking
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scan and detection add variability to the crossing time on the U.S.-
Mexico border ports of entry. The variability on the waiting time
due to security inspections can be translated into important eco-
nomic impacts [4]. Thus, disregarding factors such as the varia-
bility on transportation time results in poorly designed supply
chains, which in turn lead to important economic loses [5].

Mathematical programming models have been developed to
solve the problem of determining the optimal flow of units along
the available transportation routes. Many of these models consider
single objective functions, which compute the transportation cost
and ignore the variability of time attributes on arcs. A more
comprehensive model, however, might require additional con-
siderations such as the extremization of different objectives (e.g.,
the transportation time, the transportation freight rates, among
others). Frameworks based on the multi-objective shortest path
problem (MSPP) or the multi-objective minimum cost flow
(MMCF) can extremize several objective metrics; in many of such
frameworks, nonetheless, deterministic attributes have been as-
sumed. In real systems, the duration of the transportation dis-
ruptions and the availability of servers (e.g., cargo inspection
agents) are stochastic factors that are time-dependent.

To incorporate the inherent uncertainties of disruptive events
into the complex supply chain design optimization process, this
paper presents a model that extends previous research work
(stochastic multi-objective minimum cost flow (SMMCF) Discrete
model for solving the stochastic MMCF [6] problem with discrete
multi-objective model for supply chains with disruptions in
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Fig. 2. U.S. CPM Index (based on [7]).
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attributes) by considering stochastic continuous time disruptions
and proposes a novel simulation-based multi-objective optimization
(SimMOpt) solution procedure for solving the continuous version of
the SMMCF problems (SMMCF-Continuous). The previous SMMCF-
Discrete model considers a discrete distributed inspection time at
the border ports of entry. The proposed novel SMMCF-Continuous
model and SimMOpt solution procedure considers instead a more
realistic, continuously distributed inspection time and identifies
near-optimum solutions to large-scale instances of the problem of
designing efficient routing plans for the international trade of
perishable products.

The stochastic nature of the disruptive time is considered only
for arcs that connect nodes that represent inspection operations at
the ports of entry. The variability on the inspection time depends
on the transportation service mode used to bring products across
the border. Thus, cargo inspection time depends on the transpor-
tation mode employed. The general SMMCF model considers sto-
chasticity related to the time attributes of some arcs connecting
particular nodes, while keeping the rest of the attributes of the
arcs deterministic. The main advantage of the SMMCF-Continuous
model over the SMMCF-Discrete model is that the SMMCF-Con-
tinuous allows attributes, such as time, to be modeled by em-
ploying continuous probability distributions. Discretization of at-
tributes that represent time does not accurately represent the real
system. The main contribution of the proposed SimMOpt solution
procedure is to overcome this limitation of the SMMCF-Discrete.

Important challenges arise when solving the SMMCF-Con-
tinuous problem. The number of possible values that coefficients
representing stochastic elements can take increases exponentially.
The large number of decision variables and multiple objective
functions subject to constraints can become a problem in terms of
convergence and computational time when using search algo-
rithms. Some algorithms for solving this problem are subject to
local-optima entrapment. Many become costly in terms of com-
putational effort when searching solutions that depend on a large
number of variables and subject to a number of hard constraints.
Section 5 describes how the SimMOpt solution procedure over-
comes these challenges.

There are many real applications that can be modeled as a
stochastic minimum cost flow problem. For example, in real si-
tuations, the freight rate, which is assumed deterministic by the
general SMMCF, follows a probability distribution. Fig. 1 shows the
main components of the freight rate [7]. Fig. 2 shows the value of
the U.S. based freight cost per mile (CPM) index between De-
cember 2013 and December 2014 [7]. These figures show how the
Fig. 1. Freight Rate Components (based on [7]).
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freight rates commonly change through time and how some fac-
tors contribute to the variability. The continuously distributed
variation of the freight rate can be realistically modeled with the
SMMCF-Continuous.

SMMCF-Discrete becomes ineffective when the statistical dis-
tribution of any of the stochastic attributes is modeled by em-
ploying a continuous probability distribution. The discretization of
such distribution(s) into few classes can result in important in-
accuracies while modeling the effects of time variability, for ex-
ample. The SimMOpt solution procedure presented in this paper
aims to overcome this limitation.

This paper is structured as follows: Section 2 presents a lit-
erature review of stochastic multi-objective minimum cost flow
models and simulation models developed to treat multi-objective
and/or stochastic versions of the transportation flow problem.
Section 3 presents a description of the general SMMCF model and
the SimMOpt solution procedure. Section 4 presents the mathe-
matical formulation of the SMMCF-Discrete. Section 5 presents the
implementation of the proposed SimMOpt solution procedure
using MATLABs™. Section 6 describes a real case study. Sections
7 and 8 present the results from using the SMMCF-Discrete model
and the SimMOpt solution procedure to solve the case study.
Sections 9 and 10 present the concluding remarks and future
research.
2. Literature review

Different models and procedures have been developed for
finding near-optimum solutions to the problem of transporting
products. These models typically assume a finite vehicle capacity, a
maximum flow capacity related to arcs, and a predefined number
of visits to customers, among others. This section describes two of
the most relevant methods used to solve this type of problem.

The first type of methods, based on linear optimization, serves
as foundation for the development of the SMMCF-Discrete model.
A review of this approach is presented in Section 2.1. Models that
consider stochastic attributes related to each arc are of particular
interest in this brief literature review.

The second type, based on simulation-optimization models, is
the main foundation of the SimMOpt solution procedure. A review
of this procedure is presented in Section 2.2.
multi-objective model for supply chains with disruptions in
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Table 1
MMCF/SPP (shortest path problem) models.

Author Year Problem Stochastic Method

Sedeño-Noda, Gonzalez Mar-
tin [8]

2000 MCF Two-Phases

Prsybylski et al. [9] 2006 MCF Two-Phases
Opasanon, Miller-Hooks [10] 2006 SPP √ Label Correcting
Fonseca et al. [11] 2009 MCF Inner Point
Eusebio, Figueira [12] 2009 MCF Two-Phases
Raith, Ehrgott [13] 2009 MCF Two-Phases
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2.1. Review of the minimum cost flow and shortest path problems

The objective of a version of the minimum cost flow problem is
to find the best way to send a definite number of items in a net-
work while minimizing the net cost of the transportation. The
objective of a version of the shortest path problem is to find a path
between nodes such that the sum of the costs of using the arcs
included in the route is minimized. The minimum cost flow pro-
blem is a generalization of the shortest path problem. For a de-
tailed description of the multi-objective minimum cost flow and
shortest path problems and their solution procedures, refer to the
literature works listed in Table 1. It can be observed in Table 1 that
only one model considers stochastic attributes that represent the
cost related to allowing a certain amount of items flow through
particular arcs. Table 1 shows that only few works have made
major contributions to the development of transportation models
that consider variability on the cost attributes.

Regarding methods for the optimization of several objective
functions, Talbi [14] and Rangaiah [15] show a schematic diagram
of the multi-objective optimization models.

2.2. Review of developments on simulation-based optimization
applied to supply chain problems

For many applications, deterministic optimization techniques
attempt to minimize or maximize the outputs of a predefined
objective function. The complexity of a problem increases when
feasible solutions, that is =( … )X x x x, , n1 2, , are restricted to a set of
linear/nonlinear constraints (i.e., ⊆X n). Thus, this kind of pro-
blem is commonly “simulated” when it becomes analytically
complex.

The input and output variables of most real systems are often
considered stochastic due to the large range of uncontrollable
factors that intervene in the behavior of the system. The stochastic
behavior of these variables is often modeled so they follow prob-
ability distributions. When variables follow continuous distribu-
tions, or the space of the value to these variables is extremely
large, classical optimization techniques may become inadequate
during the optimization of the performance metric of the system.
The concept of simulation-based optimization becomes especially
useful when the stochastic behavior of the variables makes clas-
sical optimization techniques infeasible or computationally ex-
pensive. Fu [16] defines simulation optimization as “the optimi-
zation of performance measures based on output from stochastic
(primarily discrete-event) simulations.”

Fu [16] describes the simulation optimization complexity as the
computational expense derived from the large number required
replications (samples) to reduce the variation of the performance
metric value. Several optimization algorithms have been devel-
oped to minimize or maximize these performance measures while
reducing the number of alternatives to be evaluated. The com-
plexity of a problem increases as the number of performance
measures increases. To cope with complexity, the combination of
performance measures into a weighted single objective problem is
Please cite this article as: H. Chávez, et al., Simulation-based
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commonly used. A basic version of the SimMOpt solution proce-
dure follows this approach [17].

Optimization techniques allow discrete-event simulation models
to evaluate a sequence of combinations of values for the decision
variables of the system. These sequences are generated and evaluated
to provide a near-optimum solution [18].

Simulation-based optimization has turned into the most novel
topic in simulation [18]. Swisher et al. [19] provide a categorization
of the literature on discrete-event simulation optimization. Ja-
cobson et al. [20] cover thoroughly the literature preceding 1988.
Carson et al. [21] show a schematic diagram of the simulation-
based optimization methods.

2.2.1. Simulation-based optimization and the simulated annealing
(SA) algorithm

The presented optimization procedure is based on Simulated
Annealing (SA). SA is a local search method, analogous to the an-
nealing process where material is gradually cooled so that a
minimal energy state is achieved [22],[23]. Kirkpatric et al. [24]
describe the SA algorithm as a variation of a local search algorithm
suitable for deterministic objective functions.

A prominent characteristic of the SA algorithm is that its con-
vergence properties can be proven for different settings of the
parameters of the algorithm. To ensure that convergence to a
global optimum occurs, the temperature parameter must be de-
creased quite slowly [22]. Hence, it can be considered slow in
converging when compared to some other metaheuristic ap-
proaches [16]. SA is similar to other methods when its perfor-
mance is averaged among all possible problems (No Free Lunch
Theorem-NFL) [25].

Geman et al. [26] demonstrated the convergence of the SA al-
gorithm to a global optimum is possible as the temperature was
decreased slowly. Nonetheless, Akley [27] suggested a decreasing
annealing schedule to decrease the temperature more rapidly.

The parameters value settings used to define the annealing
schedule, the initial starting solution, the temperature decay rate,
and the number of iterations significantly affect the effectiveness
of the SA algorithm [22].

The SA parameters must be tuned as function of the objective
function complexity. Any set of parameters may become sensitive
to the quality of the initial solution. Thus, it is recommended to
restart the optimization algorithm several times to eliminate any
dependency of the optimized solution on the initial solution [22].

Setting the parameters of the SA algorithm requires experience
since the objective function complexity is often unknown and in
most cases arbitrary values of the SA parameters are not effective.
The complexity of the objective function can be obtained by
graphing the function for different values to the decision variables.
In most cases, this is very expensive or impossible to do. Such is
the case of the case study considered in this paper due to the large
number of decision variables.

The sensitivity of the SA algorithm to changes in its parameters
makes it hard to reutilize best-found parameters for their use in
different problems, unless similarities in complexity can be
assumed.

2.2.2. Simulation-based optimization with hypotheses tests
The SMMCF-Discrete model considers randomness related to

inspection time by including into the objective function the pos-
sible values of the stochastic attributes, for each scenario de-
termined with the ε-constraint method [6]. The values of these
stochastic attributes are assumed to follow discrete probability
distributions. However, the SMMCF-Discrete model is not appro-
priate when the values of the attributes follow continuous prob-
ability distributions. The SimMOpt solution procedure considers
continuously distributed attributes by using sets of replications
multi-objective model for supply chains with disruptions in
16), http://dx.doi.org/10.1016/j.rcim.2015.12.008i
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(i.e., sample of values of the objective functions).
Wang et al. [28] proposed hypotheses testing to determine if a

neighbor (new candidate) solution is statistically better than some
other solution. This approach, incorporated into the SimMOpt
solution procedure, allows reducing continuous variability through
several replications, for each set of values for the decision vari-
ables. The number of replications used in the SimMOpt solution
procedure was determined in such a way that the central limit
theorem allowed performing hypotheses testing for two large
samples.
3. Description of the general SMMCF model and SimMOpt
approach

The general SMMCF represents the transportation system of
products from supplying nodes to demanding nodes. The model
assumes deterministic freights rates and deterministic travelling
times affected by disruptive stochastic inspection times related to
some arcs connecting nodes along segments of the forming routes.

The basic MCF problem can be modeled as a network con-
taining a set of origin nodes with certain capacity which is in-
tended to satisfy the demand of a set of destination nodes. The
allocation of flow (the number of items moved through a given
arc) should minimize the cost related to the transportation, so that
these items being moved reach the destination nodes. The trans-
portation cost related to each arc is represented as an attribute of
the arc. The general SMMCF model considers two components of
the transportation cost: freight rate (monetary value) and transpor-
tation time (non-monetary value).

The variability in time caused by disruptive events should not
be ignored, and special attention is required when dealing with
perishable products. This variation has a major effect on the shelf-
life of the perishable products. In the techniques described in this
paper, the freight rate component is represented by a deterministic
attribute of arcs and the time component is represented by a de-
terministic attribute and a stochastic attribute. The deterministic
time attribute represents the time to travel between inter-
connected nodes. The stochastic time attribute represents the
variability on the time required to inspect cargoes at the ports of
entry in the U.S.-Mexico border. This randomness ultimately de-
rives from the transportation modes used to transport products
across the border and the time of the resulting required
inspections.

There are several road transportation modes that are available
when moving products across the U.S.-Mexico border. The selec-
tion of the transportation mode affects the variation on the in-
spection time at the border crossing ports. Variability on inspec-
tion time builds up time disruptions along the supply chain.
Summarizing, the stochastic time attributes in the proposed model
represent the variation on inspection time due the selection of
certain transportation modes.

Some approaches assume that the total cost can be considered
as a single performance metric. In many cases, the total cost in-
volves a series of components that are not always proportionally
related. Not all of these components can easily be expressed in
terms of equivalent units. When components cannot be expressed
in terms of similar units, when priorities must be considered, or
when proportionality cannot be assumed between the compo-
nents of cost, multi-objective models provide an alternative to
quantify performance metrics. In the case study presented in this
paper, arcs with large values on the freight rate attribute cannot be
assumed to have large values on corresponding time attribute
(refer to Section 6). Proportionality cannot be assumed because
increments in the value of freight rate attributes are not directly or
inversely related to increments in the value of time attributes.
Please cite this article as: H. Chávez, et al., Simulation-based
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This model supports the decision making process from the
perspective of the shipper. The minimization of the freight cost
depends on the routing strategy to particular warehouses and
ultimately to the customer. The routes represent a collection of
connected nodes and arcs. The selection of a route in the case
study implies the decision of sending units to particular inter-
connected warehouses in the Mexican side and the selection of a
transportation mode to cross the U.S.-Mexico border. Freight rates
for the segments of routes (i.e., arcs) were obtained from trans-
portation providers. Estimated deterministic times were also ob-
tained from transportation service providers. The observations
that constitute the stochastic components of time were gathered
as explained in Section 6.

The MCF assumptions are considered by the general SMMCF
model. Thus, the case study ignores the effect of the arriving time
to the inspection facility at the port of entry. However, the Sim-
MOpt solution procedure has the ability to iteratively adapt the
parameters of the distributions used to model disruptive time
variability. This ability can be further used to model the effect of
arriving time to the inspection lanes, which cause peak hours at
the inspection operations.
4. The SMMCF-discrete model

The variability on the attributes of arcs on the network pre-
sented in the case study represents the stochastic inspection time
caused by selecting a mode from the various border crossing ser-
vices available to suppliers. The SMMCF-Discrete model assumes
that this variation on the crossing time can take three possible
values that follow corresponding empirical discrete probability
distributions.

The formulation of the two-phased model for the SMMCF-
Discrete problem presented by Bustos et al. [6] is summarized in
Appendix A. The notation was slightly changed to present a con-
densed formulation. For a detailed description of the SMMCF-
Discrete, refer to Bustos et al. [6].

The first group of terms in Eq. (2) (see Appendix A) represents
the known (input) time and freight rate values of the objective
function. This group includes the terms for which all values are
deterministic. According to the ε-constraint method, the compo-
nents in the first term that are related to a particular goal remain
in the objective function, the rest of the components are con-
sidered in additional constraints. In the ε-constraint method, a
common scale before forming a weighted sum in the objective
function is not necessary. The flow conservation constraints be-
tween nodes connected by arcs with stochastic and deterministic
attributes are considered in Eq. (3) (see Appendix A). The second
group of terms in Eq. (2) (see Appendix A) represents the part for
which values of time are not certain, but possible values and
corresponding probabilities are known.

The SMMCF-Discrete model relies on the two-phased method
to solve the problem and uses the ε-constraint method to develop
the possible scenarios according to the values of time on the sto-
chastic attributes of certain arcs. The ε-constraint method defines
a grid in the objective space and solves the single objective pro-
blem constrained by each cell on the grid. The rest of the objec-
tives are considered as constraints. All the optimal Pareto solutions
can be found only if the grid has a high resolution. This means that
at most one Pareto optimal solution is found in each cell. The
number of L scenarios can be determined by L¼3ψ, where ψ is the
number of stochastic variables (i.e., stochastic arcs). L increases
exponentially to a point where the problem becomes intractable
[29]. Bender's decomposition was used to deal to a certain degree
with the exponential growth in the number of scenarios.

Ruhe [30] shows that an exponential number of non-
multi-objective model for supply chains with disruptions in
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Fig. 3. a. Structure of the SimMOpt solution procedure. b. Structure of the SimMOpt solution procedure (Details of Step 16).

H. Chávez et al. / Robotics and Computer-Integrated Manufacturing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: H. Chávez, et al., Simulation-based multi-objective model for supply chains with disruptions in
transportation, Robotics and Computer Integrated Manufacturing (2016), http://dx.doi.org/10.1016/j.rcim.2015.12.008i

http://dx.doi.org/10.1016/j.rcim.2015.12.008
http://dx.doi.org/10.1016/j.rcim.2015.12.008
http://dx.doi.org/10.1016/j.rcim.2015.12.008


H. Chávez et al. / Robotics and Computer-Integrated Manufacturing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
dominated solutions for the bi-objective case of the MMCF model
exists. The continuous version of the MMCF model becomes in-
tractable. The bi-objective minimum cost flow (BMCF) is a gen-
eralization of the bi-objective shortest path problem, which is NP-
Hard. Ehrgott [31] describes the computational complexity of
combinatory problems and demonstrates that the MSPP is NP-
Complete. Being the MCF a generalization of the SPP, it can be
concluded that the MMCF is also NP-Complete.
5. The SimMOpt solution procedure

The SimMOpt solution procedure proposed in this paper finds
near-optimum solutions for realistic situations where random
variables are used to model attributes on arcs that represent dis-
ruptive time following continuous probability distributions.

The SMMCF–Discrete computes the stochastic portion of time
by multiplying each possible value of the stochastic time attribute
by the corresponding probability. For the SMMCF-Continuous, the
space of the time attribute is infinite and the probability for each
particular value approaches zero. The SimMOpt solution procedure
computes a number of replications instead.

The SimMOpt solution procedure relies on multi-objective SA
to assess the objectives functions. Section 5.1 describes the Sim-
MOpt solution procedure in detail.

5.1. SimMOpt and SA multi-objective optimization

Fig. 3 describes the SimMOpt solution procedure. Flow on arcs
is represented as decision variables that the approach optimizes to
find the set of non-dominated solutions.

The SimMOpt solution procedure considers and adapts some
the features of the model described by Wang et al. [28].

5.1.1. Initial solutions
Wang et al. [28] suggest generating a large number of random

initial solutions. The case study in this paper has a large number of
decision variables with stochastic coefficients (i.e., attributes) in
one of the objective functions. It is extremely time consuming to
find a large set of initial solutions by using randomization of the
values of the decision variables subject to a set of constraints as
described by Wang et al. [28]. For this reason, goal programming
weights method is used to find a set of initial solutions.

The values for the stochastic time attributes considered for the
initial solutions are the expected values of the corresponding
distributions. In this way, getting initial solutions that consider
unlikely values of the stochastic time is avoided. Multi-criteria
optimization emulates deterministic conditions by using values
inferred from distributions of the stochastic coefficients.

The scaling factors used in the goal programming weights
method are the optimal values of each of the objective functions
when single criteria optimization is performed. These factors are
then multiplied by the corresponding weights and deviation
variables in the multi-criteria optimization. The deviation vari-
ables are defined as the variables that allow a given objective
function to deviate from their individual optimal solutions when
multiple competing objectives are being optimized. These devia-
tion variables model the trade-off commonly required when op-
timizing competing solutions.

Once the optimization technique has found the optimal values
for the decision variables given a configuration of weights for the
deviation variables corresponding to the competing objective
functions, these values are input into the objective functions and
several replications are computed for random values from the
corresponding continuous probability distributions for the sto-
chastic coefficients. The variability on the coefficient values of the
Please cite this article as: H. Chávez, et al., Simulation-based
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stochastic objective function is reduced by computing a set of
replications.

One sample of replications and the corresponding statistics are
computed for each configuration of weights. Thus, these config-
urations determine the resolution of the set of Pareto non-domi-
nated solutions.

5.1.2. Neighbor solutions
The SimMOpt solution procedure uses a neighbor function to

determine the value of a selected variable and finds the optimal
values of the rest of decision variables by using multi-criteria
optimization to minimize multiple functions given some weights
for each scaled deviation variable.

The variable to be perturbed is selected according to the per-
formance of the objective functions. A greedy criterion is followed
to iteratively select a variable to be perturbed. The rest of the
variables are optimized considering an increased set of constraints
that now includes the perturbed variable equal to the corre-
sponding value.

Then discretization of the Gaussian probability density function
is used to perturb the selected variable. The perturbation is con-
strained so that the selected value remains within feasibility
bounds and redundant exploration is avoided.

Random values from fit continuous probability distributions are
considered for the stochastic time attributes when optimizing
multiple functions. Scaling and replication are performed just like
with the initial solutions.

The corresponding mean value and standard deviation of the
sample of replications are computed. Then, the sample of re-
plications for the best solution and the sample for the neighbor
solution can be compared by using hypotheses testing when the
evaluated function contains stochastic coefficients.

5.1.3. SA temperature
The temperatures for each objective function are separately

determined. This obviates the need to scale the objective functions
with respect to each other. However, scaling of deviation variables
was required when optimizing the rest of the variables given a
value from the perturbation of a selected variable. The initial
temperature for the stochastic time objective function is computed
as described by Wang et al. [28].

5.1.4. Probability of acceptance
The overall probability used in the SA is the product of in-

dividual probabilities for each function [32].
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5.1.5. Exploitation condition
This condition is considered by using three procedures. The

first two procedures consist in selecting a variable in a particular
solution that has been accepted. Initially, most contributing vari-
ables are explored according to a greedy criterion, and if promising
solutions are found, the selected variable will remain the same
unless exploration of any new values becomes redundant or in-
feasible. The third procedure consists in perturbing a variable in a
particular solution that has been accepted. The SimMOpt solution
procedure uses the Gaussian distribution to perform local sear-
ches. A discretization of the Gaussian distribution allows exploring
with a high probability those integer values close to the value of
the selected variable in the current best solution.

5.1.6. Exploration condition
This condition is considered by using three procedures
multi-objective model for supply chains with disruptions in
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intended to avoid local-optima entrapment. The first procedure
consists of a random acceptance of solutions leads to exploration
of different regions of the solution surface. In the second proce-
dure, as the values of variables become explored, the iterated
perturbation of a selected variable forces search values that have a
low probability of being selected given a mean (i.e., value of the
selected variable in the current best solution) and deviation from
the Gaussian distribution. This perturbation has the effect of
contrastingly changing the values of the rest of the variables. This
leads to exploring distant regions of the solution surface. The third
procedure is when a variable has been found to be fully explored.
The random selection of a new variable leads to the exploration of
different regions in the solution surface. The extended SimMOpt
approach tracks at any given time the values of the variables that
have been already explored. These conditions and convergence are
highly dependent of the appropriate tuning of the schedule
parameters. In this paper, the case study is simulated under dif-
ferent configurations of the annealing cooling schedule. The ap-
proach to the solution of the case study and the assessment of the
performance of the SimMOpt solution procedure is explored for
several schedules and reported for the most effective configura-
tion. The effectiveness of the solutions is reported in terms of the
trade-off between computational effort and convergence to the
global-optima of the discrete version obtained by using the
SMMCF-Discrete [6]. The configurations of the schedules are de-
scribed in Section 8.
6. Case study

The case study presented in this paper is a real-life case. Data
was obtained from the Department of Homeland Security (DHS);
the data corresponds to July 5th, 2010 from 09:00 to 22:00 h. The
case study presents the distribution problem faced by two sup-
pliers of ornament flowers in Tenango, State of Mexico and Teca-
machalco, Puebla both in Mexico. The destination nodes represent
the most important customers for these flower producers. These
Fig. 4. Basic map of transportation of ornam

Please cite this article as: H. Chávez, et al., Simulation-based
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customers are located in Chicago, Illinois. Nodes that represent
warehouses on the Mexican side of the border are connected by
arcs with deterministic freight rate attributes and deterministic
time attributes. The freight rates that are used in the model were
obtained by the Mexican Institute of Transportation from cargo
transportation providers. The nodes connected by arcs with sto-
chastic time attributes represent the multi-modal transportation
of products across the border line. The case study consists of a
network with 29 nodes and 158 arcs. The items are shipped from
two origin nodes and must reach the two destination nodes in
Chicago. From the 158 arcs, 12 represent the border-crossing dis-
ruptive inspection operations. Nodes 1 and 2 represent suppliers
with capacities of 7 and 10 units, respectively. Nodes 28 and 29
represent customers with demands of 8 and 9 units, respectively.

Sections 7 and 8 show the results of experimental runs for the
case study. Fig. 4 shows the network. From this figure three ports
of entry can be identified. The arcs with stochastic attributes re-
present the inspection operations required by the different
transportation modes [6].
7. The SMMCF-discrete results

The disruptive inspections are modeled by stochastic attributes
on the arcs connecting particular node i and particular node j. The
real system was simplified so that the stochastic attributes were
considered as values of discrete probability distributions followed
by the times required for the inspection of cargo. Bustos et al. [6]
shows the Pareto frontier for the non-dominated solutions for the
discrete stochastic problem solved with the SMMCF-Discrete. It is
statistically demonstrated that the Pareto frontiers from the dis-
crete stochastic version of the case study and from a deterministic
version based on expected values are differently distributed.
ent flowers (based on Bustos et al. [6]).
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Table 2
Experiments for instance ‘A’.

Sched 1 Sched 2 Sched 3 Sched 4 Sched 5 Sched 6

Cooling factor 0.7 0.7 0.2 0.2 0.02 0.02
Maximum
rejections

8 4 8 4 8 4

Maximum runs 20 10 20 10 20 10
Maximum
accepts

8 4 8 4 8 4

The Pareto frontiers corresponding to ‘Sched 4’ to ‘Sched 6’ are shown in Fig. 5.

Fig. 5. Pareto frontiers for Sched. 4 and 6. (Note: Lead time: Time Units. Freight
Cost: Monetary).

Fig. 6. Pareto frontier for Sched 4. (Note: Delivery lead time: Time Units and Cost:
Monetary).
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8. The results from the SimMOpt solution procedure

In order to test the model, an instance ‘A’ was initially con-
sidered. This instance consisted of 7 nodes and 6 stochastic arcs.
The capacity of suppliers (nodes 1 and 2) is 3 and 7 units, re-
spectively. The demand from customers (nodes 6 and 7) is 6 and
4 units, respectively. The SA schedule parameters were set based
on the results of different experiments. The set of parameters is
shown in Table 2. The number of replications for each solution
being explored was set to 30.

In Fig. 5, it can be observed that the schedule parameters have
an effect on the charactristics of the solution. When schedule
4 was used with the SimMOpt solution procedure, 17 non-domi-
nated solutions were found. The computation time for schedule
4 was 20.2 min. When schedule 6 was used with the extended
SimMOpt solution procedure, 16 non-dominated solutions were
found. The exploration was insufficient to generate all the non-
dominated solutions found with schedule 4. The computational
time for schedule 6 was 54.98 min. The initial solutions for both
schedules were the same as they were computed by using the
expected values from the continuous probability distributions
followed by the stochastic time attributes. Overall, it can be con-
cluded that schedule 4 performed better than schedule 6 in terms
of the number of non-dominated solutions found. Convergence
suffered from a rapid cooling when considering schedule 6 [26].
Anoher conclusion is that schedule 1 performed as good as sche-
dule 4. However, schedule 1 required 48.68 min. Thus, many un-
succesful iterations in terms of finding non-dominated solutions
were computed. All the computed solutions by using schedule
4 are shown in Fig. 6. When 30 replications were computed none
of the initial solutions remained as members of the set of efficient
solutions for any of the schedules.

The solutions computed for the ‘A’ instance are lined up
Please cite this article as: H. Chávez, et al., Simulation-based
transportation, Robotics and Computer Integrated Manufacturing (20
because the determinsitic coefficients of the freight rate objective
function are integers. The coefficients in the time objective func-
tion are not integers as they follow continuous probability dis-
tributions. The decision variables are also integers as they re-
present the flow of items along arcs. Thus, the freight rate objec-
tive function is not continuously distributed in instance ‘A’.

For the case study, after performing goodness of fit tests on the
observed values of inspection time (see Section 6), triangular
distributions with different parameters were considered for the
modeling of the stochastic time attributes on arcs representing the
border-crossing inspection operations. The coefficients in the
freight rate objective function are not integers in the case study.

The “intlinprog” Matlabs™ function was used to solve the in-
teger programming (IP) problems mentioned in Fig. 3a and b. The
“intlinprog” is used due to its computational efficiency to solve
problems with large number of variables and constraints. Table 3
shows the SA schedules considered for the case study. The number
of replications for each solution being explored was set to 30. This
table includes the computational time and the percentage of ex-
ploration for the last replication performed for several schedules.
The percentage of exploration is measured as the total number of
values assigned to a selected variable (ref. Fig. 3b step “h”) divided
by the space of all feasible values that a decision variable can take.

Figs. 7 and 8 show the Pareto frontiers for schedules 1 and 8,
respectively.

With schedule 8, the SimMOpt solution procedure found 34
non-dominated solutions in 16.27 hours. With schedule 1, it found
19 non-dominated solutions in 1.35 hours. A trade-off analysis is
necessary when assesing the quality of the solutions. The set
found by SMMCF-Discrete contains 21 efficient solutions.
Figs. 9 and 10 show the Pareto frontiers for the SMMCF-Discrete
model and the SimMOpt solution procedure with schedules 1 and
8, respectively. The “SMMCF Pareto” series in Figs. 9 and 10 show
the frontiers described by the non-dominated solutions found
with the SMMCF-Discrete model. The dotted lines in these figures
show the non-dominated solutions found with the SimMOpt so-
lution procedure (schedules 1 and 8, respectively) when con-
tinuous probability distributions are considered.

A test on the convergence of the solution obtained with sche-
dule 1 to the global-optima found by using SMMCF-Discrete [6]
was performed. The p-values were obtained for the F-tests on the
values of the evaluated freight rate function and the statistics from
the evaluated replications of the time objective function for the
non-dominated solutions obtained with the SimMOpt solution
multi-objective model for supply chains with disruptions in
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Table 3
Experiments for instance ‘Case study’.

Sched 1 Sched 2 Sched 3 Sched 4 Sched 5 Sched 6 Sched 7 Sched 8

Cooling factor 0.02 0.02 0.2 0.2 0.4 0.4 0.6 0.8
Maximum Rejections 4 8 4 8 4 8 4 8
Maximum Runs 10 20 10 20 8 10 10 10
Maximum Accepts 4 8 4 8 4 8 4 8
Comp. Time (hrs) 1.36 2.89 2.54 5.35 1.77a 5.77 3.16 16.28
% Exploration 3.64% 7.89% 4.04% 18.11% 9.81% 28.23% 4.65% 75.04%

a Data corresponding to 10 Max Runs.

Fig. 7. Pareto frontier for Schedule 1. (Note: Delivery lead time: Hours and Cost:
Monetary).

Fig. 8. Pareto frontier for Schedule 8. (Note: Delivery lead time: Hours and Cost:
Monetary).

Fig. 9. Pareto frontier for the SMMCF-Discrete & SimMOpt solution procedure
(Schedule 1). (Note: Lead time: Hours. Cost: Monetary).

Fig. 10. Pareto frontier for the SMMCF-Discrete & SimMOpt solution procedure
(Schedule 8). (Note: Lead time: Hours. Cost: Monetary).
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procedure and the solutions obtained with the SMMCF-Discrete.
The respective values are 0.42 and 0.78. At a significance level
0.05, it can be concluded that the variances are equal. Similarly,
the p-values for the t-test assuming equal variances are 0.064 and
0.15. At a significance level of 0.05, a significant difference be-
tween the two sets is not indicated. A Kolmogorov-Smirnov test
was performed on the results for both objective functions. For the
freight cost values, the test considered 15 intervals. The corre-
sponding critical value is 0.133. For the time objective function, 10
intervals were considered. The corresponding critical value is
Please cite this article as: H. Chávez, et al., Simulation-based
transportation, Robotics and Computer Integrated Manufacturing (20
0.168. At a 0.05 significance level, it can be assumed an equal
distribution for both samples.

For the case study, it can be demonstrated that the set of effi-
cient solutions from the SimMOpt solution procedure that
multi-objective model for supply chains with disruptions in
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considers the SMMCF-Continuous model are statistically equal to
set of solutions for the SMMCF-Discrete model. The SMMCF-Dis-
crete can be considered as the benchmark since this is a simplified
version of the model. The optimality of the set of solutions found
with the SMMCF-Discrete model is discussed by Bustos et al. [6].
9. Conclusions

The results when considering a deterministic MMCF problem
(using expected values of the probability distributions) and when
considering the SMMCF-Discrete model can be proved to be sta-
tistically different. This implies that solving problems where
variability is reduced to expected values of distributions yield re-
sults that do not guarantee optimum or near-optimum solutions to
MMCF problems with stochastic attributes on arcs.

Discretization of continuously distributed variables implies
assuming oversimplifications that do not emulate the real system.
This is aggravated when the discrete distributions consider a
limited number of classes or when the more realistic continuous
distribution show special behavior, such as the multimodal
distributions.

The SMMCF-Discrete model is suitable when the variability of
attributes of arcs can be modeled by using discrete probability
distribution with few classes. The SMMCF-Discrete model was
used to solve the case study when only three possible values were
considered for the coefficients that represent the stochastic time
attributes. The number of stochastic arcs in this case study is 12.
Therefore, the number of scenarios considered by the SMMCF-
Discrete model was =3 531,44112 . When the number of stochastic
arcs or the number of classes in the discrete probability distribu-
tions used to model the attributes increases, the number of sce-
narios increases greatly. Thus, the SMMCF-Discrete model be-
comes inefficient.

Using probability distributions and replicates of performance
functions is a convenient alternative to model stochastic attri-
butes. This paper shows the results from testing the efficiency of
the SimMOpt solution procedure which has the ability to consider
continuously distributed components in the SMMCF-Continuous
problem. The results from the SimMOpt solution procedure are
compared to the results from the SMMCF-Discrete model. The
efficiency is assessed in terms of computational effort, percentage
of exploration and convergence to the global-optimum.

The results from the SimMOpt solution procedure are statisti-
cally equal to optimal solutions found with the SMMCF-Discrete.
b

d
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The schedule 1 outperformed the rest of the schedules (with only
3.64% of exploration and a CPU time of 1.36 hours) and was used to
obtain these results. The computational time of schedule 1 is 8.29%
of that required by a more exhaustive exploration from using
schedule 8. Schedule 1 considers relatively low parameters when
compared against some other tested schedules. Thus, optimality of
the results might not be a consequence of exhaustive exploration.
However, the SimMOpt solution procedure requires experi-
mentation to find an adequate schedule for each particular
implementation.

In conclusion, this paper presents a novel methodology that
uses a hybrid multi-objective simulated annealing (MOSA) to solve
MCF problems with continuously distributed stochastic attributes
on arcs.
10. Future work

One feature of the SimMOpt solution procedure is that the
parameters of the probability distributions can be easily adapted
to change according to the time of the day. This would allow
modeling additional intrinsic factors and its effects, such as the
effects of peak hours on disruptive events. The effect on the quality
of the solutions and computational times when considering this
feature will be assessed in the future. A variant to this feature
would be to change the parameters of the probability distribution
according to the current flow of items to model saturation of arcs
at the border ports of entry.

The convergence to global-optimum by using the proposed
SimMOpt solution procedure was previously discussed. However, a
thorough analysis of the results requires the evaluation of the
computational effort required to obtain converging results from
using population-based metaheuristics such as ant colony opti-
mization, particle swarm optimization, and artificial bee colony.
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Appendix A
Index for the origin node, bϵV

Index for the destination node, ϵd V
bd
p
 Cost of using the arc from b to d according to criterion = … ( )ϵp r b d Ap, 1, 2, . , , ,
bd
 Flow from node b to node d, ϵdb, V
b
 Capacity/Demand of node b, ϵb V

[ ]cbd

p
 Expected value of cost of using the arc that goes from b to d according to criterion, = … ( )ϵp r b d A1, 2, , , ,
q
 Probability of scenario = …q q Q, 1, 2, ,
qbd
p
 Cost of using arc that goes from b to d according to criterion p in a q scenario, = … ( )ϵ = …p r b d A q Q1, 2, , , , , 1, 2, ,
[ ]Cqbd
p
 Probability of cost value resulting from using arc from b to d according to criterion p in a q scenario,

= … ( )ϵ = …p r b d A q Q1, 2, , , , , 1, 2, ,
qbd
 Flow from b to d in a q scenario, ( )ϵ = …b d A q Q, , 1, 2, , Second-stage decision variables given q scenario.
Y
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1, l db l 1,.., l 1, ,

b¼1,…l indexes of deterministic arcs
β= … ≤b g g1, , for the second phase
= + … βb l 1, , indexes of stochastic arcs

d¼1,…l indexes of deterministic arcs
θ= … ≤d k k1, , for the second phase

θ= + …d l 1, , indexes of stochastic arcs
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